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Abstract

We know from decades of speech perception research that listeners can perceive and use a wide array
of fine-grained phonetic details, including the detailed coarticulatory influences that nearby sounds
have on each other, when perceiving speech. For example, the vowel in can includes a nasalization
feature (from the final nasal consonant) not present in the word cat. We believe details like this
provide the listener with a rich network of informative cues and are key to understanding our
astonishing ability to disambiguate meaningful speech sounds from a seemingly infinite range of noisy
inputs. Unfortunately, these cues, whether subtle or overt, are generally missing or contradictory in
text to speech (TTS) synthesis output.

We present a method of improving concatenative speech synthesis by explicitly
modeling coarticulation. The Festival speech synthesis system (Taylor et al. 1998) was modified
to use airflow data during unit selection. The output of this modified system and the unmodified
system were compared in a listening experiment. Results indicate not only that listeners are sensitive
to the sub-categorical phonetic differences but that, in general, they prefer speech synthesized from a
hybrid acoustic/articulatory model to standard acoustic-only speech synthesis.

Background: Coarticulation

There is consensus in speech perception research that coarticulatory information
affects listener judgments, but theorists disagree on the perceptual usefulness of the
information:

I Coarticulation is not ideal for the listener because it introduces variation (Ladefoged 2001,
Tatham & Moreton 2006) or because it renders contrasts less distinct (Lindblom 1990).

I Sometimes instances of coarticulation overlap and obliterate featural cues but other instances
enhance the perceptual saliency of neighboring features. (Stevens & Keyser 2008).

I Coarticulation is useful information that aids listeners in tracking the speakers’ articulatory
gestures (Fowler 1996).

Coarticulatory cues influence listeners’ decisions:
“If synthetic speech is to be listened to for long periods with the intention of getting the
content straight, the synthesis must be more than interpretable. It must be accurate in ways
that the person doing the synthesis cannot hear directly.” — Whalen 1984

I Identification: Vowel nasalization alone, with no N, elicits N percepts in American English,
suggesting that listeners are, indeed, sensitive to vowel nasalization (Beddor et al. 2007).

I Reaction time: Absence of anticipatory vowel nasalization slows listeners’ reaction times in
identifying N vs. C (Fowler & Brown 2000).

Background: Concatenative Speech Synthesis

Concatenative synthesis works by stringing together sound units chosen from a large database of
recorded speech. These units are chosen to minimize two acoustic metrics: the cost of aligning a
particular unit with the desired speech output (target cost) and the cost of adjoining the next sound
to the most-recently selected unit (join cost):
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Cjoin(ui−1, ui))

I where t is the target phone in the sequence and

I u represents the unit of sound to be appended.

I These costs are calculated using primarily acoustic information

I Specifically, a distance metric based on MEL frequency cepstral coefficients (MFCCs).

There are two assumptions implicit in a model that generates speech by minimizing acoustic
distances between segments:

1. There are invariants in the speech stream that identify segments (so, for example, a segment
from one utterance can be used to produce the percept of that segment in another context).

2. These invariants are acoustic.

The history of concatenative speech synthesis has, in many respects, been shaped by attempts to
deal with coarticulation given these assumptions. Early models attempted to eliminate coarticulation
by recording only carefully articulated diphones in heavily controlled articulatory contexts (leading to
interpretable but unconvincing speech). More recent systems have moved toward implementing
coarticulation indirectly by recording enormous databases of speech and synthesizing utterances by
preferring units that were naturally contiguous. One of the greatest limitations of these
systems is the jarring juxtaposition of perfectly natural-sounding speech (using contiguous units
from the database) with mis-matched units from another part of the database —we believe the
solution to this problem lies in modeling coarticulation directly.

Theoretical Goals

We take the position that coarticulation is signal rather than noise and serves to facilitate listeners’ perception of speech
(including synthesized speech). The primary goal of the present project is to develop a principled join cost calculation that
explicitly takes coarticulation into account when selecting acoustic units.

I Baseline: Is presence of accurate coarticulatory information perceptually useful in synthesized speech?

I Do listeners prefer this more accurate synthesis?

I Is airflow a useful and efficient means of automatically labeling a speech synthesis database with fine-grained coarticulatory
detail?
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A spectrogram of the words
“cupcakes and ice cream”
extracted from one of the TIMIT
prompts and aligned with RMS
nasal airflow data.

Method

1. Recording
A native speaker of a Southeastern-Michigan dialect of
English read the 452 sentence ‘phonetically-balanced’
portion of the TIMIT database (Fisher et al. 1986) in a
sound booth from prompts displayed on an LCD screen.
The speaker was not a professional voice actor (contra to
recommendations in the synthesis literature).

2. Airflow Data Collection
The same speaker then re-recorded these prompts while
attached to the EVA2 pneumotachograph for both oral
and nasal airflow data collection. The speaker had a
silicon tube inserted in one nostril and wore a flexible
silicone mask to capture nasal and oral airflow
respectively. The silicone mask necessarily distorts the
acoustic signal —requiring the recording of separate
databases (see discussion).

To maximize utterance similarity between the acoustic
and aerodynamic recordings, the TIMIT prompts for these
recordings were delivered by playing-back the original
acoustic recordings over headphones.

3. Reference Voice Creation
The acoustic recordings were used to create a clunits
voice (Black & Taylor 1997) using the Festival open
source speech synthesis system. Clunits was chosen both
for its conceptual simplicity and its use of phoneme-sized
(aka uniphone) segments; the use of diphone or larger
units would mask some of the improvements possible with
an airflow-guided system.

4. Airflow Database Labeling
To label units in the clunits speech database using airflow
data, both the acoustic and airflow databases were
force-aligned to the TIMIT prompts to produce
segment-level labels with a 5-state left-right HMM with
no skips and a ‘silences’ model allowing self-loops (Young
et al. 2009). Many segmentation problems in both
databases were hand-corrected.

5. Stimulus Generation
50 words containing nasals that were not present in the
TIMIT prompts were synthesized using the reference
system. An independent listener chose the 25 most
natural of these utterances. Finally, airflow-guided
versions were synthesized by re-ranking units for the vowel
targets to minimize first differences in the raw nasal
airflow traces between candidate vowel units and the
Festival-selected consonant units. Consonants were held
constant across both airflow-guided and reference stimuli.
A final list of required units (including re-ranked vowels)
was synthesized using a modified version of the Festival
software.
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6. Assessment
Synthesis quality was assessed via listening experiment.
20 undergraduates at the University of Michigan saw the
text of each stimulus 24 times, in random order while
hearing both the airflow-guided and reference stimuli.
Participants were instructed to indicate via response pad
whether the first or second utterance sounded “more
natural”. Presentations were balanced for first/second
order. One stimulus pair (against) was withheld for use as
a practice item.

Results: Listener Judgments
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Discussion

Baseline: Is presence of accurate coarticulatory information perceptually useful in synthesized
speech?

Yes. Though participants performed at chance levels for 7 of the 24 items, they performed significantly differently
from chance on the other 17. A repeated measures analysis of variance on the response data from the synthesis
comparison confirms what the plot above implies. There is a significant main effect for word (F(23,11503) =
61.608, p<0.001).

Do listeners prefer this more accurate synthesis?

On average, yes they do. The mean response (on a scale of 0 to 1) was 0.6. Participants preferred the airflow
re-ranked utterance in 13 of the 24 pairs (there is a significant main effect for each word at the .01 or .001 level for
every word except bent, bean, minute, game, change, bunny and dame (participants performed at chance on these
items). Interestingly, in all but one of these items for which the manipulation was ineffectual, the manipulated unit
was a mid or high front vowel. We know that nasalization is a less salient cue for these vowels and more work will
be required to see if there really is an affect of vowel quality.

Is airflow a useful and efficient means of automatically labeling a speech synthesis database with
fine-grained coarticulatory detail?

In this experiment it absolutely was not, but it easily could have been. Most of the difficulty with this project (and,
very possibly, several of the poorer results) relate to having to record the speech database twice, segment it twice,
and assign airflow values from one database to acoustic units in a parallel database. All of these difficulties were
due to the use of the oral airflow mask (which renders the audio recordings unusable for synthesis). As the oral
airflow data turned out to be unnecessary for the reranking, we could easily have recorded the TIMIT prompts only
once while collecting both nasal airflow data and a clean, usable acoustic signal.

The collection of nasal airflow data with a pneumotachograph is easy, non-invasive, the head is free to move and
the subject is relatively comfortable (particularly when compared with electromagnetic articulography, velotrace or
even the relatively non-invasive ultrasound). Without an oral airflow mask to perturb the audio signal, the method
reported here has great promise as an efficient and useful means of modeling coarticulation for concatenative
speech synthesis.

Conclusions

The data reported here are consistent with the position that the ultimate goal of speech synthesis should be to
maximize similarity to an idealized percept and not, as seems to be the general understanding, to maximize
similarity to an idealized utterance.

Our findings appear to support the position that coarticulation is useful signal for listeners and not, as many
contend, mere distortion of the speech stream.
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